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Abstract

A new expression for fluid velocity is presented for a fluid-conveying semi-circular pipe with an extensible centreline. The

proposed fluid velocity expression is obtained from the material derivative, while the previous velocity expressions are from

Love’s kinematical relations. In order to show that the new fluid velocity expression is more reasonable than the previous

velocity expressions, the equations of in-plane motion derived with the new expression are compared to the equations

derived with the previous expressions. Furthermore, the equilibrium positions, natural frequencies and mode shapes

obtained with both the new and previous expressions are analysed and discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic analysis of pipes conveying fluid has been a popular topic in engineering, because these pipes
are widely used in various applications, e.g., refrigerators, air-conditioners, chemical plants, hydropower
systems and so on. Much research about straight pipes conveying fluid has been reported. Some examples of
these studies can be found in Refs. [1–4], in which the vibrations and stability of fluid-conveying pipes were
analysed. Compared to straight pipes, only a few studies of curved pipes conveying fluid have been undertaken
because the curved pipes require more complicated formulation and analyses than the straight pipes. The
approaches to investigate the dynamics and stability of fluid-conveying curved pipes may be classified into two
types: the inextensible and extensible theories. The inextensible theory has the assumption that the centreline of
a curved pipe is not stretched. On the other hand, in the extensible theory, a curved pipe can possess an
extensible centreline. Misra et al. [5,6] compared the differences between the inextensible and extensible
theories. They pointed out the fact that the extensible theory is more reasonable than the inextensible theory.
Based on the extensible theory, Dupuis and Rousselet [7] as well as Doll and Mote [8] also derived the
equations of motion for curved pipes conveying fluid. In the above papers for the extensible curved pipes, it
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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should be noted that the fluid velocity was derived by using Love’s kinematical relations [9]. This velocity
expression is valid only for the inextensible theory. Therefore, this expression should be modified if it is used to
derive the equations of motion for an extensible curved pipe transporting fluid. Otherwise, some misleading
results may be obtained from the analysis of extensible pipes.

In this study, a new expression for the fluid velocity in a fluid-conveying semi-circular pipe is presented when
the centreline of the semi-circular pipe is extensible. For simplicity of discussion, only the in-plane vibration is
considered for the semi-circular pipe with clamped-clamped boundary conditions. The Euler–Bernoulli beam
theory is adopted under the assumption of a slender pipe and the von Karman strain theory is used to consider
the geometric nonlinearity. To derive the equations of motion, the extended Hamilton principle [10] is applied
because the transport of fluid mass exists across the pipe boundaries. By applying three types of approaches,
i.e., (1) the Hamiltonian approach with the new velocity expression, (2) the Newtonian approach with the
previous velocity expression, and (3) the Hamiltonian approach with the previous velocity, the equations of
motion are derived for the semi-circular pipe. In order to show that the proposed fluid velocity expression is
more reasonable than the previous velocity expression, the equations of motion for the three cases are
theoretically reviewed. Furthermore, the equilibrium positions, natural frequencies and mode shapes of the
pipe obtained from the proposed expression of velocity are compared to those obtained from the previous
velocity expression.
2. Equations of motion

Fig. 1(a) shows the top view of a slender semi-circular pipe conveying fluid, which is clamped at both ends.
The semi-circular pipe has a radius of the centreline, R, and the centreline is extensible. The flow is assumed to
be a plug flow with constant velocity U. The XY coordinate system is a space-fixed inertial frame and the y
coordinate is measured from the X-axis. The cross-section of the pipe is shown in Fig. 1(b) where the xyz

coordinate system is a local coordinate system. In Fig. 1, er, ey and ez are unit vectors moving along with a
fluid particle in the centreline while i, j and k are unit vectors fixed in the space.

The pipe is modelled as an Euler–Bernoulli beam, of which the planar cross-section perpendicular to the
y-axis remains a plane after deformation. In order to simplify discussion in this study, it is assumed that the
vibration of the pipe occurs in the XY plane. This means that only the in-plane vibration is considered in this
study. In this circumstance, the motion of a point in the pipe can be represented by the displacements in
the r and y directions, ur and uy:

urðx; y; tÞ ¼ uðy; tÞ; uyðx; y; tÞ ¼ vðy; tÞ þ xfðy; tÞ, (1)

where t is time, u and v are the radial and circumferential displacements of a point on the centreline, f is the
rotation angle about the z-axis due to the in-plane bending deformation. This angle can be expressed in terms
of u and v:

f ¼ ðv� u0Þ=R, (2)

where the superscripted prime denotes partial differentiation with respect to y [11].
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Fig. 1. Semi-circular pipe conveying fluid with velocity U: (a) top view and (b) cross-section.



ARTICLE IN PRESS
D. Jung et al. / Journal of Sound and Vibration 304 (2007) 382–390384
To obtain the kinetic energy of the fluid-conveying semi-circular pipe, the pipe velocity and the fluid velocity
need to be expressed in terms of the radial and circumferential displacements. Considering only the in-plane
deformation, the displacement vector of a point in the pipe after deformation may be written as

rp ¼ ður þ xþ RÞiþ uyjþ zk. (3)

Differentiation of Eq. (3) with respect to time results in the pipe velocity given by

vp ¼ v̄p þ x _fj, (4)

where the superposed dot stands for differentiation with respect to time, and v̄p is the velocity of a point on the
pipe centreline given by

v̄p ¼ _uiþ _vj. (5)

Similarly, the position vector of a point in the fluid after the pipe deformation can be represented by

rf ¼ ður þ xþ RÞer þ uyey þ zez. (6)

The fluid velocity can be obtained by the material derivative with respect to time [12]. Denoting the fluid
velocity by vf, it is given by

vf ¼
qrf

qt
þU

qrf

R qy
. (7)

Since the unit vectors er and ey move with a fluid particle, the angular velocity of these vectors is U/R.
Therefore, the time derivatives of the unit vectors become

_er ¼ ðU=RÞey; _ey ¼ �ðU=RÞer. (8)

Substitution of Eq. (6) into Eq. (7) using Eq. (8) leads to

vf ¼ v̄f þ xw, (9)

where v̄f is the fluid velocity at the centreline of the pipe and w is the angular velocity of the fluid cross-section
about the z-axis:

v̄f ¼ ½ _uþ ðU=RÞðu0 � vÞ�er þ ½_vþ ðU=RÞðuþ v0 þ RÞ�ey, (10)

w ¼ �ðU=RÞfer þ ½
_fþ ðU=RÞðf0 þ 1Þ�ey. (11)

If the rotary inertia effect of the pipe cross-section is neglected, the kinetic energy of the fluid-conveying semi-
circular pipe can be approximated to

T ¼
1

2

Z p

0

ðmpv̄p � v̄p þmf v̄f � v̄f ÞRdy. (12)

where mp and mf are the mass densities of the pipe and the fluid per unit pipe length, respectively.
Next, consider the potential or strain energy of the semi-circular pipe. If the pipe is assumed slender, it is

regarded to be subjected to only circumferential stress. In this case, neglecting the gravity effect, the variation
of the potential energy dV is given by

dV ¼

Z p

0

Z
A

sd�RdAdy, (13)

where d is the variation operator, s is the circumferential stress, e is the corresponding strain, and A is the
cross-sectional area of the pipe. In order to derive the equations of motion equivalent to the equations
presented in Ref. [6], the nonlinear strain and the linearized stress are used in this study. For the slender semi-
circular pipe, the nonlinear strain, which is often called the von Karman strain, is expressed as

� ¼ �̄þ f2=2þ xf0=R, (14)

where �̄ is the strain of the pipe centreline given by

�̄ ¼ ðuþ v0Þ=R. (15)
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The linearized stress is obtained by deleting the nonlinear term from Eq. (14) and multiplying the remaining
terms by Young’s modulus E. This linearized stress can be written as

s ¼ Eð�̄þ xf0i=RÞ. (16)

Introduction of Eqs. (14) and (16) to Eq. (13) yields

dV ¼

Z p

0

RQðd�̄þ fdfÞ þ ðEI=RÞf0 df0
� �

dy, (17)

where Q is the circumferential force across the pipe cross-section and I is the area moment of inertia about the
z-axis:

Q ¼

Z
A

sdA; I ¼

Z
A

y2 dA. (18)

Inserting Eq. (16) in the first equation of Eq. (18), the circumferential force can be represented as

Q ¼ ðEA=RÞðuþ v0Þ. (19)

The equations of motion for the semi-circular pipe conveying fluid and the associated boundary conditions
are derived by using extended Hamilton’s principle [10]:Z t2

t1

ðdT � dV � dMÞdt ¼ 0, (20)

where dM is the virtual momentum transport. This momentum transport should be considered to derive the
equations of motion because the fluid can move across the pipe boundaries. For the given semi-circular pipe,
the virtual momentum transport may be given by

dM ¼ ½mf ðvf � drÞðUey � nÞ�
p
y¼0, (21)

where n is the outward normal vector at the boundaries. The equations of motion and the corresponding
boundary conditions are obtained by substituting Eqs. (12), (17) and (21) into Eq. (20). The obtained
equations of motion are nonlinear partial differential equations coupled between u and v:

ðmp þmf Þ €uþ 2mf ðU=RÞð _u0 � _vÞ þmf ðU=RÞ2ðu00 � u� 2v0Þ

þQ=R� ½Qðu0 � vÞ�0=R2 þ EIðuiv � v000Þ=R4 ¼ mf U2=R, ð22Þ

ðmp þmf Þ€vþ 2mf ðU=RÞð _uþ _v0Þ þmf ðU=RÞ2ð2u0 þ v00 � vÞ

�Q0=R�Qðu0 � vÞ=R2 þ EIðu000 � v00Þ=R4 ¼ 0. ð23Þ

The associated boundary conditions for the pipe are given by

u ¼ u0 ¼ v ¼ 0 at y ¼ 0; p. (24)

3. Theoretical investigation

The objective of this section is to show that the proposed velocity expression is more reasonable than the
previous velocity expression [5–8] derived by using Love’s kinematical relations. If the semi-circular pipe is
assumed to have only the in-plane motion, the fluid velocity of Refs. [5–8] can be written as

v̄f ¼ ½ _uþ ðU=RÞðu0 � vÞ�er þ ð_vþUÞey. (25)

Comparing Eqs. (10) and (25), it is seen that the second terms, i.e., the circumferential components are
different from each other. If the pipe is inextensible, the strain of the pipe centreline �̄, given in Eq. (15), should
be zero. In this case, the velocity expression of Eq. (10) becomes identical to that of Eq. (25). For this reason, it
may be said that the velocity expression derived from Love’s relations is valid for an inextensible pipe.

Three cases of the equations of motion for the fluid-conveying semi-circular pipe are considered in this
study. The equations of motion for Case I are the equations proposed in this study. These equations are
derived by using the Hamiltonian approach with the new fluid velocity expression of Eq. (10). The equations
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of motion for Case II are equivalent to the equations presented in Refs. [5–8], which were obtained by
applying the Newtonian approach (force–moment balance) with the fluid velocity of Eq. (25). The equations
of motion for Case III are derived by using the Hamiltonian approach with the velocity of Eq. (25). The
differences between the three cases appear in the dynamic terms of the governing equations related to the fluid
velocity. These terms correspond to the second and third terms of Eqs. (22) and (23). For these three cases, the
derivation methods of the equations and the dynamic terms related to the fluid velocity are summarized in
Table 1.

It should be noted that the second terms of Eqs. (22) and (23) represent the gyroscopic effects related to the
fluid velocity. Therefore, if the equations of motion are discretized by an approximate method, for example,
the finite element method, and if the discretized equations are expressed in a matrix-vector equation, the
gyroscopic matrix should be skew-symmetric. To show that Eqs. (22) and (23) yield a skew-symmetric
gyroscopic matrix after discretization, consider the weak form associated with the finite element method.
Denote the weighting functions of the trial functions u and v by ū and v̄. Then, the weak form can be obtained
by multiplying Eqs. (22) and (23) by ū and v̄, respectively, summing the equations, and integrating the
resultant equation over 0pypp. The terms representing the gyroscopic effects in the weak form may be
expressed as

2mf ðU=RÞ

Z p

0

ūTH_udy, (26)

where

u ¼
u

v

� �
; ū ¼

ū

v̄

� �
; H ¼

q=qy �1

1 q=qy

" #
. (27)

Since the H matrix is skew-symmetric, a gyroscopic matrix obtained by discretization becomes skew-
symmetric. However, the gyroscopic terms of Cases II and III shown in Table 1 cannot produce a skew-
symmetric H matrix. This means that skew-symmetric gyroscopic matrices cannot be derived from the
equations of Cases II and III after the equations are discretized.

Other evidence that the equations of Case I are valid can be found in Ref. [4] for a straight pipe conveying
fluid. Using the notation of this paper, the dynamic terms in the equations presented in Refs. [2–4] can be
expressed as

ðmp þmf Þ €uþ 2mf U q _u=qsþmf U2 q2u=qs2, (28)

ðmp þmf Þ€vþ 2mf U q_v=qsþmf U2 q2v=qs2, (29)

where s is the straight coordinate along the pipe centreline. When the radius of curvature for the semi-circular
pipe increases to infinity, the pipe becomes a straight pipe. In this case, letting the radius R be infinite and
Table 1

Derivation methods of the equations of motion for the three cases and the dynamic terms due to the fluid velocity

Case Derivation method Dynamic terms related to the fluid velocity

Case I (present study) Hamiltonian approach with the velocity of Eq. (8) 2mf ðU=RÞð _u0 � _vÞ þmf ðU=RÞ2ðu00 � u� 2v0Þ

2mf ðU=RÞð _uþ _v0Þ þmf ðU=RÞ2ð2u0 þ v00 � vÞ

Case II (Refs. [5–8]) Newtonian approach with the velocity of Eq. (23) 2mf ðU=RÞð _u0 � _vÞ þmf ðU=RÞ2ðu00 � v0Þ

mf ðU=RÞð _uþ _v0Þ þmf ðU=RÞ2ðu0 � vÞ

Case III Hamiltonian approach with the velocity of Eq. (23) mf ðU=RÞð2 _u0 � _vÞ þmf ðU=RÞ2ðu00 � v0Þ

mf ðU=RÞ _uþmf ðU=RÞ2ðu0 � vÞ
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rewriting Rqy as qs, the dynamic terms of Eqs. (22) and (23) reduce to the terms given by Eqs. (28) and (29).
However, the dynamic terms of Cases II and III cannot be transformed to Eqs. (28) and (29). Therefore, it
may be concluded that the equations of Case I are more reasonable than the equations of Cases II and III.
4. Numerical investigation

In order to demonstrate the differences between the above three cases, the static equilibrium positions, the
natural frequencies and the mode shapes are numerically investigated for a semi-circular pipe conveying fluid.
The same solution methods presented in Ref. [6] are used in this study. In other words, solutions of the
equations describing the static equilibrium and the perturbations in the neighbourhood of the static
equilibrium are computed by the same finite element method formulated in Ref. [6]. The values for the
physical properties and dimensions of the pipe system are mp ¼ mf ¼ 1.78 kg/m, E ¼ 10� 109 Pa, R ¼ 0.5m,
A ¼ 2.473� 10�4m2 and I ¼ 1.498� 10�7m4. In addition, the number of elements used in the finite element
method is 40, which is also the same as the number used in Ref. [6]. For convenience of discussion, the
dimensionless natural frequency ō and the dimensionless fluid velocity Ū are defined by

ōn ¼ onR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp þmf

EI

r
; Ū ¼ UR

ffiffiffiffiffiffi
mf

EI

r
. (30)

First, the static equilibrium positions of the fluid-conveying semi-circular pipe are examined for the three
cases of the equations of motion. When the dimensionless fluid velocity is given by Ū ¼ 4, the displacements
representing the static equilibrium position are depicted in Fig. 2, where Fig. 2(a) is for the radial displacement
while Fig. 2(b) is for the circumferential displacement. The solid, dashed and dotted lines in Fig. 2 correspond
to Cases I, II and III, respectively. These patterns of lines are used in the following figures in this section. As
shown in Fig. 2, no difference is observed between the equilibrium positions of Cases II and III; however, the
position of Case I is somewhat different from those of Cases II and III.
u 
(m

m
)

-20

0

20

40

60

0 30 60 90 120 150 180

v 
(m

m
)

-10

-5

0

5

10

Case I

Cases II and III

Cases II and III
Case I

� (degree)
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Next, the natural frequencies of the pipe are analysed to compare the numerical differences resulting from
the three cases of modelling. For this purpose, the lowest three dimensionless natural frequencies for the
variation of the dimensionless fluid velocity are illustrated in Fig. 3. The natural frequencies of the first and
second modes show relatively large differences between Case I and the other cases, in Figs. 3(a) and (b). In
contrast, the natural frequencies of the third mode, presented in Fig. 3(c), have no such large differences
between the three cases. It is also seen in Figs. 3(a) and (b) that the natural frequency differences in the first
and second modes increase with the fluid velocity. When the dimensionless fluid velocity is given by Ū ¼ 4, the
lowest three dimensionless natural frequencies are compared for the three cases in Table 2. The largest
difference of 4.2% is shown in the first mode.

Finally, the differences of the mode shapes between the three cases are investigated. Fig. 4 shows the
displacements representing the mode shapes for the lowest three natural frequencies when Ū ¼ 4. In Fig. 4, the
first and second columns correspond to the radial and circumferential displacements for the mode shapes,
respectively, while the first, second and third rows correspond to the first, second and third modes. As
illustrated in Fig. 4, even though the three cases do not have visible differences in the displacements of the first
mode, they have considerable differences in the displacements of the second and third modes.
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Table 2

Comparison of the dimensionless natural frequencies between the three cases when Ū ¼ 4

First mode Second mode Third mode

Case I 3.64575 9.34364 14.85636

Case II 3.50402 9.24832 14.87272

Case III 3.49194 9.24305 14.84235

Difference between Cases I and II �3.9% �1.0% 0.1%

Difference between Cases I and III �4.2% �1.1% �0.1%
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5. Summary and conclusions

In this study, the new fluid velocity expression was presented for the dynamic analysis of an extensible semi-
circular pipe conveying fluid. The proposed fluid velocity expression was obtained from the material
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differentiation with respect to time. This fluid velocity expression is different from the previous velocity
expression based on Love’s kinematical relations. With the proposed velocity expression, the equations of in-
plane motion for the clamped-clamped semi-circular pipe conveying fluid were derived by using the
Hamiltonian approach.

To prove that the proposed fluid velocity expression is more reasonable than the previous velocity
expression, the three cases of governing equations for the fluid-conveying semi-circular pipe were derived and
examined. The equations corresponding to Cases I, II and III were derived by using the Hamiltonian approach
with the proposed velocity, the Newtonian approach with the previous velocity, and the Hamiltonian
approach with the previous velocity, respectively. The theoretical investigation showed that the presented
velocity expression resulted in more acceptable equations of motion than the previous velocity. In addition, it
was observed from the numerical investigation that the equilibrium positions, the natural frequencies and the
mode shapes have non-negligible differences between the three cases.
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